ACID BASE AND SALT

- CLASSIFICATION BASED ON THEORIES/CONCEPTS
- 1. ARRHENIUS CONCEPT OF ACID BASE
- 2.BRONSTED LOWRY THEORY
- 3. LEWIS THEORY
- 4. LUX-FLOOD CONCEPT
- 5. SOFT AND HARD ACID BASE THEORY

ARRHENIUS CONCEPT

- ACID PRODUCES HYDROGEN ION IN AQUEOUS SOLUTION
- $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \underset{\mathrm{Or}}{\rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}}$
- $\mathrm{HCl}(a q) \rightarrow \mathrm{H}_{3} \mathrm{O}(a q)+\mathrm{Cl}-(a q)$
- HI>HBr>HCl>HF(decreasing strength of acidity)

$$
\mathrm{SiH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2}+\mathrm{H}_{2}
$$

$\mathrm{CH} 4+\mathrm{H} 2 \mathrm{O} \rightarrow$ no reaction
HF, H2O, NH3, CH4 Acidity??

- Base produces

Hydroxyl ion in aqueous solution
$\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{Na}^{+}(\mathrm{aq})$
$\mathrm{KOH}>\mathrm{NaOH}>\mathrm{LiOH}$ (Fajan's concept)
$\mathrm{Te}(\mathrm{OH})_{6}>\mathrm{Si}(\mathrm{OH})_{6}>\mathrm{B}(\mathrm{OH})_{3}$

DRAWBACKS

- Unable to explain why NH_{3} which contains no OH^{-}ions, is a base and not an acid
- Why a solution of FeCl_{3} is acidic or why $\mathrm{Na}_{2} \mathrm{~S}$ is alkaline
- Arrange in order of increasing acidity:

1. $\mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}$

- Limited to aqueous media only. Failed to explain why NaNH_{2} is alkaline and $\mathrm{NH}_{4} \mathrm{Cl}$ acidic in liquor ammonia
- Failed to define inherent acidbase character(phenol/picric acid)

Bronsted-Lowry Theory

The Proton-donor-acceptor system

- Bronsted Acids
- Molecular: $\mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}$
- Cationic: $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right]^{+3}\right.$

$$
\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{+2}+\mathrm{H}^{+} \text {(proton) }
$$

Anionic: $\mathrm{HCO}_{3}^{-} \rightarrow \mathrm{H}^{+}+\mathrm{CO}_{3}^{-}$

- Bronsted Bases
- Molecular:

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}
$$

- Cationic:

$$
\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{+2}
$$

- Anionic:

$$
\begin{gathered}
\mathrm{CN}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{HCN} \\
\mathrm{CO}_{3}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{HCO}_{3}^{-}
\end{gathered}
$$

$$
\underset{\text { Acid 1 } 1}{\mathrm{HCl}}+\underset{\text { Base 2 }}{\mathrm{H}_{2} \mathrm{O}} \stackrel{\text { Acid 2 }}{\mathrm{H}_{3} \mathrm{O}^{+}} \underset{\text { Base } 1}{\mathrm{Cl}^{-}}
$$

(Conjugate acid-base pair)

Reactions in aqueous media

"Reactions in Aqueous Solution".A water molecule coordinated to a metal ion is more acidic than a free water molecule for two reasons. First, repulsive electrostatic interactions between the positively charged metal ion and the partially positively charged hydrogen atoms of the coordinated water molecule make it easier for the coordinated water to lose a proton.

Effect of charge on acidity

(a)

The contour's show the electrondensity on the 0 atoms and the H atoms in both a free water molecule (left) and water molecules coordinated to $\mathrm{Na}^{+}, \mathrm{Mga*}$, and Alw ions. These contour maps demonstrate that the smallest, mosthighly charged metal ion (Als) causes the greatest decrease in electron density of the O-H bonds of the water molecule. Due to this effect, the acidity of hydrated metal ions increases as the charge on the metal ion increases and its radius decreases.

Thus aqueous solutions of small, highly charged metal ions, such as Al^{*} and Fe er, are acidic:

Comparison of Hydracids

hydracid	Ka value	BDE(kJ/mol)
HF	7.2×10^{-4}	570
HCl	1×10^{6}	430
HBr	1×10^{9}	370
HI	3.3×10^{9}	300

- The acid strength increases with increase in the size of atoms

$$
\begin{gathered}
\mathrm{Hl}>\mathrm{HBr}>\mathrm{HCl}>\mathrm{HF} \\
\mathrm{H}_{2} \mathrm{Te}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

Gas phase acidity increases across a period and down a group in the p-block binary acids

Oxo and Hydroxo acids

- An oxo acid is one in which the acidic proton is on a hydroxyl group with an oxo group attached to the same atom.Usually represented as $\mathrm{M}(\mathrm{O})_{\mathrm{x}}(\mathrm{OH})_{\mathrm{y}}$

The acidity of these oxyacids increases significantly as the oxidation state of the central atom becomes larger

- $\mathrm{HOCl}<\mathrm{HClO}_{2}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4}$

A hydroxo acid is one in which the acidic proton is on a hydroxy group without a neighboring oxo group. Usually
represented as $\mathrm{M}-\mathrm{O}-\mathrm{H} \rightarrow \mathrm{MO}+\mathrm{H}$
$\left.\mathrm{Te}_{\mathrm{V}} \mathrm{VI}\right) \mathrm{OH}_{6}>\mathrm{Si}(\mathrm{IV})(\mathrm{OH})_{4}>\mathrm{B}(\mathrm{III})(\mathrm{OH})_{3}$

Oxy acid	$\mathrm{M}(\mathrm{O})_{x}$ $(\mathrm{OH})_{y}$	Value of X	pKa $=8-5 x$	Ka	pka expt
HOCl	$\mathrm{Cl}(\mathrm{OH})$	0	$8-$ $(5 \times \mathrm{x})$ $=8$	3×10^{-8}	7.5
HClO_{2}	$\mathrm{ClO}(\mathrm{O}$ $\mathrm{H})$	1	$8-$ (5×1) $=3$	1×10^{-2}	2.0
HClO_{3}	$\mathrm{Cl}(\mathrm{O})_{2}$ (OH)	2	$8-$ (5×2) $=-2$	5×10^{2}	-1.3
HClO_{4}	$\mathrm{Cl}(\mathrm{O})_{3}$ (OH)	3	$8-$ (5×3) $=-7$	1×10^{3}	-10

- $\mathrm{H}_{3} \mathrm{PO}_{2}$ (Monobasic with one hydroxyl and one oxo group)
- $\mathrm{H}_{3} \mathrm{PO}_{3}$ (Dibasic with two hydroxyl and one oxo group)
- $\mathrm{H}_{3} \mathrm{PO}_{4}$ (Tribasic, Three hydroxyl and one oxo group)
- $\mathrm{H}_{3} \mathrm{PO}_{2}>\mathrm{H}_{3} \mathrm{PO}_{3}>\mathrm{H}_{3} \mathrm{PO}_{4}$ Strong acid weak acid
- $\mathrm{H}-\mathrm{P}(\mathrm{I})=\mathrm{O}^{\delta-2}$

$$
\begin{gathered}
\mid \\
{ }^{\delta^{-}} \mathrm{O} \ldots \mathrm{H}^{+\delta} \\
\delta^{-} \mathrm{O} \ldots \mathrm{H}^{+\delta} \\
\mathrm{H} . . . \mathrm{O}^{\delta^{-}}-\mathrm{P}(\mathrm{v})=\mathrm{O}^{\delta^{-2}} \\
\mid \\
\delta^{-} \mathrm{O} \ldots \mathrm{H}^{+\delta}
\end{gathered}
$$

Lewis concept of Acid and bases

- Lewis acid: A chemical species that contains an empty orbital to accept a pair of electrons and form a coordinate covalent bond
- Lewis base: A substance that has a filled orbital containing non-bonding electron pair which it can donate to form a dative bond with a Lewis acid.

$$
\mathrm{H}_{3} \mathrm{~N}:+\mathrm{BF}_{3} \rightarrow \mathrm{H}_{3} \mathrm{~N}^{-}>\mathrm{BF}_{3}
$$

Lewis base L. acid acid-base adduct

$$
\mathrm{BF}_{3}<\mathrm{BCl}_{3}<\mathrm{BBr}_{3}<\mathrm{Bl}_{3}
$$

$$
\text { ------Lewis acid st increases } \rightarrow
$$

$$
\mathrm{NOCl} \rightleftharpoons \mathrm{NO}^{\circ}+\mathrm{Cl}
$$

मानक-यगाणिए
$1+\frac{1}{4}+\frac{1}{4}$

$$
\mathrm{NaNO}_{3} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{NO}_{3}^{-}
$$

O. 4. बनलिए स गाने शसरन किन्या काया कात

च्नश्या

TC.U. 2000

Protonic concept) :

 पारक या बन्नूपषणन कातक (conjugate base) ।

$$
\begin{aligned}
& \mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-} \\
& \text {क्याभिक } \\
& \text { जाइरफी साइ्क }
\end{aligned}
$$

 base pair) गुर्वि कही।

जिड 8 काबदেन्न माष्य उा रन अ्याभिड आड़ का

Сनि आ्याभिड, काরन «s - OH^{-}₹ण्गानि वयो द

$[F H$
11
$F-B: N-H$
I I

 उद।
 -1) धारा थढ़ा़न। खেমन. छ1
ब्ञाजन वयोগটির মষ্যग्ऐ दোन F ऊबाড़ (lone-pair of

एक्र मान भाध्या माथार
 F ब্যাড় দাতার ডূমিকা এदए F, NH_{3} \& BF_{3}-बর मार

অथ্া

[C.U. '94]

 बडढण भারে। তাই জन একট नूँইস מারक।
 OH^{-}आয়न উeপাদन করে।

$$
\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+[\because \ddot{O}-H]^{-}
$$

 निর্দে কর :

$$
\mathrm{SO}_{2}, \mathrm{AlCl}_{3}, \mathrm{Co}^{3+} \text { बবश } \mathrm{F}^{-}
$$

 जता

 बारड भाऱ।

 चड्यनाजि जूँইস अ্যাসিড शिসাबে কাध করতে পারে।

Group Characteristics of Lewis acids

- $\mathrm{SiF}_{4}>\mathrm{SiCl}_{4}>\mathrm{SiBr}_{4}>\mathrm{Sil}_{4}$

Correlates with the decrease in electron withdrawing power of the halogen from F to I

$$
\begin{aligned}
& \mathrm{Si}^{\delta+} \mathrm{F}_{4}{ }^{\delta-}+\mathrm{H}_{2} \mathrm{O}\left(\mathrm{H}^{+} \ldots . \mathrm{OH}{ }^{-}\right)=\mathrm{Si}(\mathrm{OH})_{4}+4 \mathrm{HF} \\
& \mathrm{SiO}_{2} \\
& \mathrm{SbF}_{5}+2 \mathrm{HF} \rightarrow\left[\mathrm{SbF}_{6}\right]^{-}+\left[\mathrm{H}_{2} \mathrm{~F}\right]+ \\
& \text { Super acid }
\end{aligned}
$$

Oxides of Group 16 family like Sulfur dioxide can act as Lewis acid by accepting an electron pair at s-atom, and can also act as a base by donating its lone pair either from sulfur or from oxygen

Bromine and lodine molecules of Group 17 family act as mild Lewis acids

Boric acid behaves as strong acid in presence of diols

- Boric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$ is a weak acid which does not act as a proton donor but acts as a Lewis acid, accepting a pair of electrons from hydroxyl ion.

$$
\mathrm{B}(\mathrm{OH})_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow\left[\mathrm{~B}(\mathrm{OH})_{4}\right]^{-}+\mathrm{H}^{+}\left(\mathrm{k}_{\mathrm{a}}=6 \times 10^{-10}\right)
$$

$\left[\mathrm{B}(\mathrm{OH})_{4}\right]^{-}+$cis-diol \rightarrow (anionic chelate complex) $+\mathrm{H}^{+}+4 \mathrm{H}_{2} \mathrm{O}$
The proton can now be treated against strong alkali using phenolphthalein indicator

- 1. Arrange the bases $\mathrm{HS}^{-}, \mathrm{F}^{-}, \mathrm{I}^{-}, \mathrm{NH}_{2}^{-}$in order of increasing proton affinity

2. Thermally most stable: $\mathrm{PH}_{4} \mathrm{Cl}, \mathrm{PH}_{4} \mathrm{Br}, \mathrm{PH}_{4} \mathrm{I}$
3. Most acidic oxide: $\mathrm{Ag}_{2} \mathrm{O}, \mathrm{V}_{2} \mathrm{O}_{5}, \mathrm{CO}$

Soft and Hard Acid Base Principle

- Ralph G. Pearson (1963) proposed the principle, abbreviated as SHAB. The complex $A: B$ is most stable when A and B are either both soft or both hard. The complex is least stable when one of the reactants is very hard and the other is very soft.
$\underset{\substack{\text { Lewis acid } \\ \text { (Acceptor) }} \underset{\substack{\text { Lewis base } \\ \text { (donor) }}}{\mathrm{B}} \rightarrow \underset{\text { adduct }}{\mathrm{A}: \mathrm{B}}}{ }$

Hard base: hard to oxidise Characteristics: High electronegativity/ low polarisibility/presence of filled orbitals Hard acids: Difficult or hard to polarise.
Characteristics: high oxidation state/a small size/a noble gas electronic configuration Methyl mercury cation $\mathrm{CH}_{3} \mathrm{Hg}^{+}$is proton like and monopositive soft Lewis acid

$$
\mathrm{BH}^{+}+\mathrm{CH}_{3} \mathrm{Hg}^{+} \longleftrightarrow \mathrm{CH}_{3} \mathrm{HgB}^{+}+\mathrm{H}^{+} \quad \text { if } \mathrm{K}>1, \mathrm{~B} \text { is soft }
$$

if $K<1, B$ is hard
Indicate with reason the direction of the following reaction:

$$
\begin{gathered}
\text { i. } \mathrm{CF}_{3} \mathrm{H}+\mathrm{CH}_{3} \mathrm{~F}=\mathrm{CF}_{4}+\mathrm{CH}_{4}\left(\mathrm{CF}_{3}+\mathrm{H}^{-}, \mathrm{CH}_{3}^{+}, \mathrm{F}^{-}\right) \\
\text {ii. } \mathrm{H}_{2} \mathrm{SO} \\
4
\end{gathered}+\mathrm{FeS}(\mathrm{~s})=\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{FeSO}_{4}
$$

- The definition covers things which would become acids or bases if dissolved in water

$$
\mathrm{CaO}+\mathrm{CO}_{2}=\mathrm{CaCO}_{3}
$$

CO is considered an anhydride f carbonic acid and CaO as base since it 2 would give $\mathrm{Ca}(\mathrm{OH})_{2}$ in water
An acid is an oxide ion acceptor and a base is an oxide ion donor
The concept is generally used in high temperature anhydrous systems and in molten state Chemistry

$$
\begin{gathered}
\mathrm{CaO}_{2} \mathrm{SiO}_{2}=\mathrm{CaSiO}_{3} \quad 3 \mathrm{Na}_{2} \mathrm{O}+\mathrm{P}_{2} \mathrm{O}_{5}=2 \mathrm{Na}_{3} \mathrm{PO}_{4} \\
\text { Base acid }
\end{gathered}
$$

Other solvent system

Ammonia as solvent

- $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$

$$
\mathrm{NH}_{3}+\mathrm{NH}_{3} \leftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{NH}_{2}^{-}
$$

NH Cl (ammonium chloride) reacts with $\mathrm{KNH}_{\text {(}}$ (potassium amide) to give salt and solvent
$\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{KNH}_{2}=\mathrm{KCl}+2 \mathrm{NH}_{3}$
Acid Base Salt Solvent
$\mathrm{Bil}_{3}+\mathrm{KNH}_{2} \rightarrow$ product?
$\mathrm{NH}_{2}{ }^{-} \leftrightarrow \mathrm{H}^{+}+\mathrm{NH}^{2-}$
$\mathrm{NH}^{2-} \leftrightarrow \mathrm{N}^{3-}+\mathrm{H}^{+}$

- $\mathrm{SO}_{2}+\mathrm{SO}_{2} \leftrightarrow \mathrm{SO}^{2+}+\mathrm{SO}_{3}{ }^{2-}$
- $\mathrm{SOCl}_{2}+\mathrm{K}_{2} \mathrm{SO}_{3}=2 \mathrm{KCl}+2 \mathrm{SO}_{2}$
Acid Base salt solvent

Conjugate acid base pair

pH of a solution=- $\log _{10}[\mathrm{H}+]$

	pH		pOH	
				- $\mathrm{pH}+\mathrm{pOH}=14$
1 M sodium hydroxide (NaOH)	14		0	
	13	\uparrow	1	
household ammonia	12	-	2	
	11	-	3	
toothpaste	10	${ }^{\circ}$	4	
baking soda solution	9		5	
	8		6	
pure water	7		7	
urine	6		8	
black coffee	5		9	
	4	는	10	
cola or vinegar	3	¢	11	
	2	\sum°	12	
gastric juices	1	\downarrow	13	
1 M hydrochloric acid (HCl)	0		14	

The K_{w} for water at $100^{\circ} \mathrm{C}$ is 4.99×10^{-13}. Calculate $\mathrm{p} K_{\mathrm{w}}$ for water at this temperature and the pH and the pOH for a neutral aqueous solution at $100^{\circ} \mathrm{C}$. Report pH and pOH values to two decimal places.

Given: K_{w}
Asked for: $\mathrm{p} K_{w}, \mathrm{pH}$, and pOH

Strategy:

A Calculate $\mathrm{p} K_{\mathrm{w}}$ by taking the negative logarithm of K_{w}.
B For a neutral aqueous solution, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$. Use this relationship and Equation 16.7 to calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ and $\left[\mathrm{OH}^{-}\right]$. Then determine the pH and the pOH for the solution.

Solution:

A Because $\mathrm{p} K_{w}$ is the negative logarithm of K_{w}, we can write
${ }_{N}=-\log K_{w}=-\log \left(4.99 \times 10^{-13}\right)=12.302$

For a neutral solution, $\mathrm{pH}=\mathrm{pOH}$

And $\mathrm{pH}+\mathrm{pOH}=\mathrm{pKw}$
Therefore $2 \mathrm{pH}=12.30$, or $\mathrm{pH}=6.15$

Strong Acid

(a) Strong acid titrated with strong base

(b) Strong base titrated with strong acid
(a) As o.20 M NaOH is slowly added to 50.0 mL of o. 10 MHCl , the pH increases slowly at first, then increases very rapidly as the equivalence point is approached, and finally increases slowly once more. (b) Conversely, as 0.20 M HCl is slowly added to 50.0 mL of o .10 M NaOH , the pH decreases slowly at first, then decreases very rapidly as the equivalence point is approached, and finally decreases slowly once more.

At the equivalence point (when 25.0 mL of NaOH solution has been added), the neutralization is complete: only a salt remains in solution (NaCl), and the pH of the solution is 7.00 . Adding more NaOH produces a rapid increase in pH , but eventually the pH levels off at a value of about 13.30 , the pH of 0.20 MNaOH .

Complete the following table and generate a titration curve showing the pH versus volume of added base for the titration of 50.0 mL of 0.288 M HCl with 0.321 M NaOH . Clearly indicate the equivalence point.

Base Added (mL)	10.0	30.0	40.0	45.0	50.0	55.0	65.0	75.0
pH								

Strong Acid

(a) Weak acid titrated with strong base

(b) Weak base titrated with strong acid

